

META ANALYSIS OF VIDEO MODELING INTERVENTIONS ON THE SOCIAL SKILLS OF CHILDREN WITH AUTISM

Video Modeling Defined:

An intervention method that uses video recording to provide a visual model of target behaviors by reviewing the recording (Maione & Mirenda, 2006) and involves the participant watching a video that depicts someone performing a task targeted for acquisition (Marcus & Wilder, 2009).

Significance:

Video Modeling (VM) is a promising and effective practice for teaching social behaviors to students with autism (Marcus & Wilder, 2009; Apple, Billingsley & Schwartz, 2005; Nikopoulos and Keenan, 2004; Buggey, 2005)

- Incorporates visual and auditory features relevant to the learner (Maione & Mirenda, 2006; Hine & Wolery, 2006)
- Can be employed effectively to teach social skills to children with autism in a wide range of environments (Apple, Billingsley & Schwartz, 2005; Marcus & Wilder, 2009)
- Easy to implement, cost and time effective, provides prompt feedback (Reagan, Higbee, Endicott, 2006)
- Effective in generalizing and maintaining behaviors (Charlop-Christy, Loc Le, Freeman, 2000; Hine & Wolery, 2006)
- Single subject VM studies are usually interpreted by visually inspecting graphed data (Reynhout and Carter, 2006)
- There is a need for supporting evidence-based interventions with an "effect size" with more objective and reliable measures (Kazdin, 2008)

Search Strategies:

- An electronic search was conducted for studies from 2000 to 2010 using the Educational Resources Information Center (ERIC), Google Scholar and PsycINFO.
- Search terms included: 'video modeling', 'autism', 'social skills', social initiations and 'single subject design'
- Ten studies that met the criteria were reviewed **Inclusion Criteria:**
- Single case research with a multiple baseline design that demonstrated experimental control (Horner, et al., 2005)
- Participants had a diagnosis of autism according to DSM-IV
- Focus on improving social and communication skills
- The independent variable was a form of video modeling, with the video created by the instructor or researcher
- The study used a multiple baseline design

Carol Sparber, M.Ed. Special Education/Transition, Kent State University

ANALYSIS OF VIDEO MODELING INTERVENTIONS: Is there a difference in the effectiveness in types of video modeling?

	m cypes				
	Type of				Overall Strength of intervention
Citation	Intervention	PND	PAND	PEM	(max points possible: 7)
Apple, Billingsley &	Video Modeling	67%	86%	.75	
Schwartz (2005)		(1pt)	(1pt)	(1pt)	3
	VM with	100%	100%	1.00	
	feedback	(3pts)	(2pts)	(2pts)	7
Buggey (2005)	Video self	94%	91%	.88	
	modeling	(3pts)	(2pts)	(1pt)	6
Charlop-Christy, Le,	Video modeling	88%	95%	.85	
& Freeman (2000)		(2pts)	(2pts)	(1pt)	5
	In-vivo	70%	89%	.79	
	modeling	(1pt)	(2pts)	(1pt)	4
Hine & Wolery (2006)	Point- of- view	73%	78%	.64	
	video modeling	(2pts)	(1pt)	(0pts)	3
Maione & Mirenda	Video modeling	79%	74%	.72	
(2006)		(2pts)	(1pt)	(1pt)	4
	VM with	91%	94%	.98	
	feedback	(3pts)	(2pts)	(2pts)	7
Marcus &Wilder	Peer video	82%	83%	.72	
(2009)	modeling	(2pts)	(1pt)	(1pt)	4
	self-video	80%	87%	.78	
	modeling	(2pts)	(1pt)	(1pt)	4
Nikopoulos & Keenan	VM with	96%	98%	.97	
(2007)	feedback	(3pts)	(2pts)	(2pts)	7
Nikopoulos & Keenan	Video modeling	98%	89%	.77	
(2004)		(3pts)	(2pts)	(1pt)	6
Reagon, Higbee &	Video modeling	80%	94%	.93	
Endicott (2006)		(2pts)	(2pts)	(2pts)	6
Tetreault & Lerman	Point of view	77%	51%	.63	
(2010)	video modeling	(2pts)	(0pts)	(0pts)	2

Methods:

- Graphs for each study were calculated and analyzed for Percentage of Non-overlapping Data (PND), Percentage of All Non-Overlapping Data (PAND) as well as Percentage of Data Points Exceeding the Mean (PEM) resulting in 92 calculations across 10 studies with 29 participants.
- The basic data unit of analysis was the comparison between baseline and intervention Nonparametric data for each study was rated for effectiveness based on predetermined criteria (Parker, Vannest & Davis, 2011)
- Ratings were recorded and analyzed to determine the most effective form of VM intervention

Strength of Intervention:

Criterion Measures Defined: 6-7 pts. effective, 5 or less ineffective **Percentage of Non-overlapping Data (PND)** Calculation of non-overlap between baseline and successive intervention phases . (Scruggs, Mastropieri, & Casto, 1987) PND > 90% highly effective (3pts) PND >70% effective (2pts) PND 50% - 70% questionable effectiveness (1pt) PNE < 50% reflects unreliable treatment (0pts)

Percentage of All Non-Overlapping Data (PAND) Calculation of total number of data points that do not overlap between baseline and intervention phases (Parker, Hagan-Burke, & Vannest, 2007) PAND >88% effective (2pts) PAND 79% to 88% questionable effectiveness (1pt) PAND < 79% unreliable treatment (0pts)

Percentage of Data Points Exceeding the Mean (PEM) phase (Ma, 2006) PEM .9 to 1, highly effective (2pts) PEM .7 to .9 moderately effective (1pt)

Results:

- equally strong.

Practical Implications & Future Studies:

- praise, prompting and role play.

Calculation of percentage of data points exceeding the median of baseline

PEM Less than .7 questionable or not effective (0pt)

• Graphical displays of all studies indicate positive effects across participants, behaviors and settings. An evaluation of PND, PAND

and PEM across all studies show the strength of intervention was not

• 43% of the studies were rated moderately to highly effective but 57% of the studies received ratings of unreliable or not effective • Results indicate video modeling with feedback is the most effective

form of intervention with average nonparametric ratings of 97%

Effective implementation of Video Modeling should include the use of multiple methods of feedback such as: additional practice, social

• Future single subject design studies should report non-overlapping calculations to allow researchers and special educators to understand relative strength or effectiveness of the intervention method.

• Nonparametric measures should be used to examine the effectiveness of maintenance and generalization.

• Future studies should consider use of newer technology, such as apps for Ipads, Ipods and Iphones as a form of a video intervention.